

Wizard’s Chess
EE Senior Design 2020

Members: Ben Baileys, Delany Bolton, Fabio Frietas Lopes Soares, Luke Tholen,
Shae Watkins

2

Table of Contents

1) Introduction…………………………………………………………………3
2) Detailed System Requirements……………………………………………..6
3) Detailed Project Description………………………………………………..8

a) CoreXY……………………………………………………………..11
b) Motors……………………………………………………………...13
c) Magnet……………………………………………………………...15
d) Voice Control………………………………………………………..17
e) Chess Tracker……………………………………………………...19
f) Interfaces……………………………………………………………..20

4) System Integration Testing…………………………………………………20
5) User/Installation Manual…………………………………………………..22
6) To-Market Design Changes………………………………………………….23
7) Conclusion………………………………………………………………….25
8) Appendices…………………………………………………………………...26

3

1. Introduction

Imagine you are an eleven-year-old child. You open the mail to see that you have just

received your letter informing you that you’ve been accepted into Hogwarts School of Witchcraft

and Wizardry. It is the best day of your life; not only have you learned that magic is real and you

possess this gift, but also because you no longer have to play with a run of the mill boring

chessboard. Now you can play with Wizard’s Chess! Wizard’s Chess is a chessboard with pieces

that can respond to your voice commands. It is a revolutionary way to play chess! Now imagine:

sadly you did not receive a letter from Hogwarts outlining your acceptance when you were

eleven. Instead, you grew up in the muggle world, studied hard, and attended the University of

Notre Dame to become an esteemed Electrical Engineer. Senior Design rolls around and you are

granted the unique opportunity to create your version of Wizard’s Chess. Do you take the

chance? Unfortunately not because a global pandemic broke out and in order to respect social

distancing rules and the safety of others, you were required to stay home and participate in

remote learning. However, the concept and design of Wizard’s Chess still exists and is outlined

in the following formal report.

While the idea of Wizard’s Chess stems from a fictional movie about magic, the real-life

version has many practical applications and would be quite popular in the modern world.

Technology is becoming more and more geared towards full automation every day, and to

develop and market a chessboard that is completely hands-free would be a welcome addition to

the market. In order to make the project as realistic to the movie as possible, but also possible in

real life, many different problems had to be addressed. First, a mechanical system that will work

underneath the chessboard and can move the pieces to and from their grid specific locations in

order to have proper gameplay is needed. The system also needs to be able to remove pieces

from gameplay. In order to accomplish this, the group utilized a coreXY 3D printer coordinate

system and an electromagnet was housed in the moveable carriage. The coreXY design choice

allowed for precision movements and an electromagnet allowed for selective contact on the

4

chess pieces. The chess pieces would be magnetized and when intended to grab a particular

piece, a current would be passed through the electromagnet thus allowing it to grab a piece and

move it to the appropriate location. Testing was not able to be conducted on this, but another

potential use of the electromagnet would be to utilize the ability to reverse the polarity of the

electromagnet by reversing the current through it. If the chess pieces of opposing colors were of

different polarity then the magnet would only pick up pieces of the correct team on each move.

This would be controlled by the software. Precision movements and electromagnet control are

very important when considering the size of a normal chessboard. The chessboard cannot be too

big as to be cumbersome, however it needs to be big enough to allow the pieces to be moved

around each other. Precision movements allow for more control and a smaller and less

cumbersome board. The requirements and design of these mechanical systems are outlined

below.

Additionally, this product requires several software subsystems. The first, a voice

recognition system that allows users to speak aloud their intended move which prompts the

board to respond by executing that move. The system has to be able to interpret a range of voices

into recognizable commands. This system requires a microphone in order to listen and collect

that data. After the command is heard and interpreted it has to be fed into a chess gameplay

subsystem of code that analyzes the move and ensures it is a valid move, as well as checking and

keeping track of all the pieces on the board. This system has the potential for AI gameplay and

other functionalities. Once the command has been interpreted and the move has been ensured as

valid the software then needs to communicate with the motors to control the coreXY system in

order to move the piece to the necessary location. These systems will have to communicate with

each other in order to perform other actions like removing a piece from gameplay, determining

when the microphone should begin listening for a new command, etc. The software component

of the project is critical and it connects all of the different systems into a working whole.

The system requirements for each of the detailed subsystems can be found in Section 2 of

this report. The detailed project descriptions, including pictures, diagrams, schematics, analysis,

and subsystem design can be found in Section 3. A description of how the entire system and all

of its subsystems could be integrated and tested can be found in Section 4. While the project

5

could not actually be built and tested, there has been significant effort put into the thought

process behind possible integration testing schemes and how successful they would be. Section 5

outlines the user operation manual and the installation manual. This would aid an individual not

only in using the product but also determining its initial set-up and normal operating parameters

and requirements. Section 6 includes the possible to-market design improvements. As the

product was never actually completed there is a lot of room for improvements in this category.

However, there is little experimental data to substantiate the feasibility of these improvements

due to the fact that a working prototype was never constructed. Section 7 provides the

conclusions drawn from this project and process, and Section 8 includes appendices, such as

design schematics and software listings.

This project, though unfinished, would have been magnificent to lay your eyes upon. It

would have accomplished the task of listening to voice commands and moving chess pieces

accordingly in order to facilitate engaging gameplay. Numerous challenges were encountered

during the preliminary build process, before spring break. Had the project been able to be

finished these would have been addressed. It could be expected though that the final product

would have had some shortcomings and those would have to be addressed in the next iterations

of the design. However, as the working prototype was never constructed, there is no way to tell if

the design would have worked as intended. Most of the code had been written and functioned

correctly, however integrating the system was impossible remotely so there was no way to

determine the actual functionality. Before spring break, there were still some significant

mechanical drawbacks to the system and a plan was in place to heavily revamp that entire system

with new 3D printed slider chassis and timing belt tweaking. If these procedures had been

completed, there is a strong possibility that the mechanical aspect of the project would have

worked very smoothly. It is expected that by the end of the semester a functional prototype

would have been built that would have correctly interpreted voice commands and translated them

into motor controls to move an electromagnet around a chess grid in order to move the chess

pieces in a hands free manner. This is what the original design aimed to accomplish and therefore

would have been a successful senior design project, if it was allowed to have been completed.

6

2. Detailed System Requirements

The following are the system requirements for each of the major parts of the Wizard

Chess design.

Motors

● Power: Must be able to draw power from a wall outlet. Will require outlet adapters and

cords. The motors require 12V so we will need to power them using a 12V converter.

● Torque: Each motor must prove enough torque to turn the coreXY pulley system, but not

too much torque as to break the timing belts.

● Speed: Each motor must provide enough speed to move the electromagnet carriage fast

enough to make gameplay happen in real time, an average of five seconds per piece

move.

● Precision: The motors need to have a step size small enough to make precise movements

within the chessboard grid, but large enough as to be appropriate for normal timed

gameplay.

CoreXY

● Accuracy: Must be able to move pieces across the chessboard with accuracy(4 sq. in. grid

squares), as well as move pieces in between other pieces(the knight).

● Robustness: Must be strong enough to withstand the tension strain imparted by the timing

belt and the weight of the board placed atop.

● Timing Belt: Must be tight enough to effectively pull the electromagnet carriage around

the board. It also must maintain this tension over time so the timing belt does not separate

from the pulley system and ruin the ability to use the chessboard.

7

● Wheels: The wheels must be the correct size to fit into the v-slotted aluminum railing,

and they must have enough friction as to not slip when in use.

● Y-grid movers: These 3-D printed pieces need to have enough durability to withstand the

tension of the pulley system, as well as enough mass to support the y-grid guide railing.

Additionally they need to be printed with enough precision to provide the wheels with a

flush contact to the v-slot.

Voice Recognition

● Accuracy: Must be able to accurately interpret a broad range of voice profiles.

● Analysis: Must be able to analyze the voice for common chess commands and respond

accordingly.

● Interfacing: Must be able to collect and analyze the data input from the microphone and

subsequently transmit that information to the chess game tracker and the motors in order

to calculate the required number and direction of steps the motor should take.

Chess Game Tracker

● Accuracy: Must be able to keep track of all game movements so to know where all pieces

are on the board as well as know which moves would be considered illegal.

● AI: Must provide some AI functionality so that the computer could effectively play a

chess game against a human opponent.

● Interfacing: Must be able to interface with both the voice recognition system and the

motors to both interpret and respond to the commands given.

Electromagnet

● Range: Must have a small enough magnetic signature to be able to move one piece at a

time while not affecting the placement of others on the board.

● Polarity: Must be able to effectively swap polarities in order to move both sides of chess

pieces(they will have different polarities).

8

● Strength: Must be strong enough to maintain a magnetic connection with the chess piece

through the wooden board as it is also moving.

● Weight: Must be light enough to be easily moved by the carriage of the coreXY system.

● Power: Must not draw too much power as to overheat the magnet, but should be able to

handle normal operating levels and be strong enough to work effectively in these

conditions.

Microphone

● Range: Must have a range of at least 5 feet in order to hear commands given at normal

distances.

● Power: Must be able to derive power from the wall outlet.

● Interfacing: Must be able to communicate with the RaspberryPi in order to interpret the

speech input.

Physical Build

● Weight: Must be light enough as to make transport feasible, if slightly cumbersome.

● Robustness: Must withstand natural wear and tear and normal indoor gameplay

conditions. Must also protect all internal mechanisms from external factors that could

harm or disrupt the system.

● Size: Must be large enough for the pieces to move effectively but small enough to easily

be moved by two people.

● Thickness: The chessboard must be thin enough to allow the electromagnet to work, but

thick enough to support the pieces as they glide across the surface.

9

3. Detailed Project Description

3.1 System Theory of Operation

Beginning with a simple game setup like traditional chess, we developed our entire

project around the board and chess pieces. Wizard’s Chess has the same rules as traditional

chess, but with a fun twist. In theory, one of the two players will give a command on their turn.

Commands follow the structure of “[piece name] to [board coordinate]” with the board

coordinates being a letter and number corresponding to the row and column. A microphone takes

the voice input and deciphers the command in a voice recognition program determining where

the current piece is being moved from and too. This information is then passed to the internal

game tracker and the motor control program. In the motor control program, rotation of the

motors is determined to align the piece with the center of the electromagnet and then move the

electromagnet to the new position. When the motors reach the initial location, the electromagnet

switches on creating a magnetic connection with the bottom of the chess piece. As the motors

move to the new position the magnet is drug along the top of the board to its final location at

which point the electromagnet turns off. At this point it is the next player’s turn. This process is

repeated until a piece is overtaken by the opponent, when this happens, the internal game flags a

piece being overtaken and moves the motors first to the piece being overtaken to remove it from

the board. Once the overtaken piece is moved off the board the usual process continues.

3.2 System Block diagram

From the user’s perspective, the Wizard’s Chess Board takes in two inputs, the player’s

voice command and the current positions of the pieces on the board, and outputs the execution of

the player’s move and updates the positions of the pieces on the board. It is important to note that

all the user will experience is giving voice commands to the board and seeing the board respond

10

with the move they just spoke, the rest is all hidden from view within the Wizard’s Chessboard to

keep the magic alive.

Figure 3.2-1

Within the chess board are four major subsections which operate without being visible to

the user. These subsections are the voice control system, the chess code, the motor software and

hardware, and the magnet software and hardware. Each of these subsections is built around a

CoreXY system for moving the pieces. These subsections and the CoreXYsystem will all be

further explained in the following subsections.

Figure 3.2-2

Once the user decides on the move they would like to make, the voice control software

recognizes the move they wish to make and the chess code calculates the required motion of

pieces required to execute this move. For example, a player could say “Queen to D6,” which the

voice command would translate into the name of the referenced piece and the destination of that

piece. The main chess game code first verifies that the requested move is valid given the piece’s

position and type. Then, using the output of the voice control software and the stored initial

positions of all of the pieces on the board, determines if it needs to remove an eliminated piece as

well as how to move the specified piece to its final destination. These moves are actuated by

sending a series of instructions to each motor of the CoreXY rig to move the magnet under the

11

desired piece and move that piece to its final destination. At the same time, the chess code also

sends instructions to the electromagnet to activate and deactivate it in order to grab and release

the piece as necessary to complete the player’s move.

Each of the mentioned subsections will now be explained in greater detail.

3.3 CoreXY

The mechanical portion of the project is inspired by various CoreXY systems such as 3-D

printers. The concept behind this design is to allow movement in a designated space either

horizontally, vertically, or diagonally. By utilizing two motors, two timing belts rotate at specific

rates to allow for a central component to be moved from an original (x,y) coordinate to a new

coordinate.

Our framework design consists of a compressed wood particle board cut such that there is

a hole in the center where the central component can move freely. Along two opposite sides of

the particle board are aluminum v-slot framing extrusions that are secured using fasteners. At

one end of each extrusion there is a motor which is secured to the particle board utilizing

industrial glue. Opposite of the motors is a screw with timing belt pulleys spaced to specific

heights by washers and nuts, still allowing the pulleys to freely rotate. This setup is the

foundation for other components to move about the determined space.

For movement in the x direction, two chassis were designed and 3-D printed to straddle

the framing extrusions supported by three v-slot wheels with bearings that sit in the side slots of

the extrusion. The chassis we printed are very similar to the one seen in figure 3.3-1. The spacing

of the wheels is such that a third v-slot framing extrusion can be connected between the two

chassis without causing any torque. Additionally, each chassis has two locations where timing

belt pulleys are secured using screws, washers, and nuts; again these pulleys are able to rotate

freely.

12

Figure 3.3-1

On the extrusion running between the two chassis is another

3-D printed chassis that is designed to move in the y direction

supported by four v-slot wheels with bearings, two on the top of the

extrusion and two on the bottom. The design we based our central

chassis on is seen in figure 3.3-2. Again, these wheels are spaced

such that there is no torque on the chassis. At the top of this chassis

are four slots in which timing belts can be secured and space for an

electromagnet to be installed.

Figure 3.3-2

The most important portion of the mechanical setup is the timing belts which are secured

to the central chassis and loop around a system of pulleys surrounding the interior then finally

around either of the motors. A schematic of the belt wrapping can be seen in figure 3.3-3.

Utilizing programming of the motors, which will be detailed later, the two motors move in

synchronous and asynchronous patterns to cause movement in the x and y direction. Due to

limitations beyond our control, the motor program was not fully tested with a complete core

design.

13

Figure 3.3-3

3.4 Motors

In order to implement our CoreXY system, we needed two motors in order to move the

central chassis to its position underneath the specified grid square. For this purpose, we used

stepper motors since they allow us to make very precise movements, down to the exact number

of steps, allowing for easy fine tuning of piece movement. Through online research, we came

across the Stepper Motor Nema 17. This device, seen in figure 3.4-1, is commonly used in 3D

printing applications which also utilize the CoreXY method. Since the requirements for a 3D

printer are very similar to ours for the chessboard, we assumed these motors would provide the

necessary torque, speed, and precision. It also fit the necessary dimensions for our board size to

easily be concealed beneath the board. These motors allow for rotation in both directions (CW or

CCW) depending on input from the motor controller (and therefore from the raspberry pi). If

both motors spin in the same direction, the chassis moves horizontally and if they spin in

opposing directions the chassis is moved vertically. The motor has two pairs of wires

corresponding to two sets of coils within the motor (figure 3.4-2). The powering of these wires is

controlled by the motor controller to generate the necessary chassis motion.

14

.

Figure 3.4-1

Each motor is connected to its own motor controller (figure 3.4-3). These motor

controllers (Shield Stepper Motor Driver V44 A3967) have five inputs: STEP, DIR, MS1, MS2,

ENABLE. The STEP pin causes the stepper motor to move a single step per rising edge. The

DIR pin sets the direction of motor rotation, either CW or CCW, depending on if this pin is

pulled high or low. The ENABLE pin allows the motor controller to send signals to the four

leads on the motor whenever it is held low. Since we always wanted our motors enabled, we tied

this pin to ground. The MS1 and MS2 pins are for making microsteps. This level of precision is

unnecessary for our use considering the 2mm step size of each motor step compared to the size

of our board.

Figure 3.4-2 Figure 3.4-3

15

These motor controllers were operated by the RaspberryPi through a python file,

cleanedRaspStepper.py (Appendix 8.17). This file takes in the motion requested by the main

chess code and turns it into commands for the motor controller so the desired chassis movement

is actuated. The main chess code sends the axis (horizontal or vertical), direction (up/down or

left/right), and distance (number of grid squares) to the cleanedRaspStepper.py file which sends

the necessary commands to the STEP and DIR pins on both of the motor controllers.

The diagram below (figure 3.4-4) shows how the RaspberryPi, motor controller, and

stepper motor are all wired together.

Figure 3.4-4

3.5 Magnet

The movement of the chess pieces will be controlled by an electromagnet fixed to the

coreXY grid assembly. The electromagnet is controlled by the same program as the motors in

order to turn on when the motor gets to its starting point and turn off once it gets to its

destination. Unfortunately, since we were unable to begin combining the subsystems before

having to leave campus, the electromagnet was unable to be tested combined with the motors.

The magnet was able to be tested on its own and did function as expected.

16

The electromagnet assembly consisted of a circuit used for driving a relay. If we

imagined the electromagnet as an inductor then the circuit we needed to accomplish this looked

something like the picture below:

Where R1 is a resistor, Q1 is a transistor, and D1 is a diode. The inductor in the circuit represents

the inductive load, electromagnetic as we mentioned earlier. This circuit protects the output from

the voltage spike that occurs when inductive load is turned off. The diode prevents the voltage

spike from surpassing the maximum rating of the transistor.

By using this circuit we are able to control the electromagnet using the raspberry pi as the

GPIO and a 12V power supply for our power rail. The raspberry pi is a standard raspberry pi

equipped to run python and the power supply is rigged to plug into a standard wall outlet and

convert it to a 12V or 5V source. This fits well into our design because the motors will also be

powered by the GPIO of the raspberry pi and the same power supply.

The components that make up the electromagnet circuit have some customization so long

as they meet a few requirements. The transistor in the image is a BJT but we actually used a

MOSFET instead. The resistor has to be fit to drive a gate voltage of about 4.5V for the

transistor. The transistor itself needs to be able to handle a 12V drain to source voltage and a 1A

current to be able to work in unison with the electromagnet.

The electromagnet we used is an adafruit 5V electromagnet. This magnet has a 10kg

holding force which translates to being able to pick up about 4lbs. max. It could also only move

ferromagnetic materials so I will include in this assembly the ferromagnetic metal disks we fixed

17

to the bottom of the chess pieces. Although it is a 5V electromagnet, we had to use the 12V

power supply because we were moving the metal disks through a thin wood surface. Because of

this separation between the magnet and what it was attracting, powering it with 12V worked

better for our design. Pictured below are the electromagnet and the metal disks. The magnet is

next to a quarter for reference and the disks are also about the size of a quarter.

3.6 Voice Control

Related to voice control, the main component worked during the semester was a Python

code that is able to listen to voice commands via the microphone and output a string. Then, this

string is used to power the movement of the pieces on the chess. The team came across several

different possibilities and options for this audio to text conversion. Big technology companies,

such as IBM, Google, Facebook, have their own Application programming interface (API) which

can be used. Another option is specialized Python libraries which, different than some APIs, are

free and unlimited. For this project, the team decided that the best option would be the API

provided by Google. The reason for this choice is that Google provides a variety of tutorials and

documentation online. From different research, most people point it to Google as being the most

reliable and capable of converting audio to string.

 Google provides a Python library called “speech_recognition” which can be easily

downloaded. This process starts with the code connecting the microphone and recording the

voice until the user stops speaking. From this point, the code can store the voice from the user.

At this point, the team decided that there is no need to archive the voices commands, however,

for the future it could be interesting as we could track how each player uses and provide analysis

18

and tips of how this user can improve. Related to Google’s API we are using a generic key which

is given by default by the library. This key is intended only for personal and testing purposes. For

example, if the team decided that we would sell this product, we would have to acquire a paid

key via Google services. It is also interesting to notice that when we use this generic key, there is

a limit of 50 requests per day. During one of our tests, we used more than 50 requests in one day

and we still could use the API. On a quick search, people mention that this limit is done in case

there are too many requests. In other words, the limit exists but it is more flexible than 50

requests per day.

Related to the code, we created a python file called “Voice.py” that handles this request

of Speech-to-Text. It is a fairly straightforward code that starts with the activation of the

microphone which captures the speech until the user stops speaking. With this audio, we make

the request to the API which returns a dictionary with three keys:

● "success": a boolean indicating whether or not the API request was successful

● "error": ̀None` if no error occurred, otherwise a string containing an error

message if the API could not be reached or speech was unrecognizable

● "transcription": ̀None` if speech could not be transcribed,otherwise a string

containing the transcribed text

As the microphone used does not provide the best audio quality, we also added a “Adjust for

Ambient Noise” feature which automatically adjusts the sensitivity to ambient noise.

One example of this API is the user saying “Move Knight to C9”. This string is treated

by several functions to make it more reliable against words that we are not expecting. Our code

looks for chess pieces' names (e.g. king, knight, queen) and a number which we know that will

be after a letter. With this, the code can filter and return “Knight C9” which are the two pieces of

information that we are interested in. One of the problems that we had is the API to understand

“night” instead of “knight”. This kind of problem was easily solved with string replacement

which it receives, for example, “night” and replaces it with “knight”. As we have more voice

commands from the user, we would be able to create even better filters and replacements

making, over time and usage, a more robust code.

19

3.7 Chess Code

Related with the tracking code, the team created several python files. For example, for

each chess piece(e.g. Rook.py, Queen.py, Pawn.py) has their own python file. This part of the

code is responsible to receive the current position of the piece intended to be moved and return

all the possible positions to allow for this piece to move. The python code called “Piece.py” is

responsible for moving the piece and also checking if there is any piece in the new position that

should be taken out of the board. As a team, we tried to break in smaller code as much as

possible enabling us to debug and figure it out where the problem could be.

The idea behind the main.py file is to make the call of the other files. Even though we

tried to make this file as simple as possible, this is probably the most important and complex part

of the code. It is also used to start the game and provide the options of 1 player vs. Ai or 1

player vs. another player. Also, it has to make the call to the voice API and trigger the motions of

the step motors. The step motors have its unique python file that is called back and forth by the

main.py. The main file also works close with the Board.py file which keeps track of the current

status of the board.

The AI.py, as the name suggests, is responsible for receiving a movement from the user

and trying, as best as possible, to return a movement that can defeat the user on the long run. For

this project, we decided to use the Minimax approach. This approach creates a search tree from

which the algorithm can choose the best move. This uses tree of all possible moves is explored to

a given depth, and the position is evaluated at the ending “leaves” of the tree.After that, we

return either the smallest or the largest value of the child to the parent node, depending on

whether it’s a white or black to move. This depth for search can be chosen with n numbers of

expansions. For this project, we have been using between 1 and 3 for testing. It is important to

notice that after 3 it will require much more time to process all the possibilities. To make as fast

as possible, we are using the multiprocessing python library that makes use of multi processors

available on the computer. As you can imagine, the effectiveness of the minimax algorithm is

heavily based on the search depth we can achieve. A future possibility could be the

implementation of the Alpha-beta pruning which is an optimization method to the minimax

20

algorithm that allows us to disregard some branches in the search tree. This approach helps to

evaluate the minimax search tree much deeper, while using the same resources.

3.8 Interfaces

The interfaces of the project are very minimal considering that it should be ready to use

right out of the box. Some of these interfaces include an LCD testing screen for troubleshooting

the program, a keyboard to troubleshoot the audio commands, and you can also connect a

monitor to see a virtual display of the game to see how the pieces should be moving. Another

interface is the power supply which is a simple wall connection to the power supply which steps

it down to a 5V and 12V source that we can use to power everything we need.

4. System Integration Testing

4.1 Completed Testing.

Our final demonstration before moving to remote learning for the remainder of the

semester was the subsystem demonstration. Here, we demonstrated each of the subsystems

described in section 3 working independently of one another. The results of the testing will be

summarized here. The agenda for the demonstration can be found on our team website under the

agenda for 4 March 2020. The following list reflects the status of our subsystems as of our last

group demonstration on this date:

● Electromagnet

○ Status: Working

■ Runs off of the RPi3

■ Switching circuit to handle new 10kg magnet (previous magnet did not

generate strong enough field to penetrate the board and attract the piece)

■ Trouble with the weight of the pieces (might have to look into new pieces)

■ Need a gate voltage of 4V to operate the mosfet

● Chess Tracker Code

○ Status: Working, Partially Integrated

21

■ Integrated with voice recognition and motor driver code

■ Takes chess moves as inputs and calculates required distances to give to

motor driver

● Voice Recognition Code

○ Status: Working, Integrated

■ Integrated with the Chess Tracker Code

■ Listens and takes voice input

● Motor Driver Code

○ Status: Working, Partially Integrated

■ Integrated with Chess Tracker Code

■ Can move the center piece in both the x and y directions to place magnet

in desired place

● Microphone System

○ Status: In Progress, Not Integrated

■ Can record .wav files and play them through headphone jack on Pi

■ Write program that will output what the Voice Recognition code needs

● CoreXY

○ Status: In Progress

■ Use 3D printer in Hesburgh to efficiently print sliders

■ Adjust center bar and electromagnet holder

■ Finalize CoreXY system tweaks

4.2 Future Testing

In order to finalize the design of the chessboard all of the subsystems would need to be

brought together to work in unity as one. In section 4.1 the status of all of the subsystems was

shown to be at or near their desired end state. However, we still needed to connect all of these

pieces which were functioning in isolation together. This was the plan for the second half of the

spring semester following spring break.

22

Our first step would have been to get all of our main chess software to the point where it

can take in a voice command through the RaspberryPi and output a series of commands to the

motor controllers to execute that move. This would entail tying the voice command code, chess

move calculation code, and motor controller code together into a single functional unit. The next

step would have been to assemble the board so the magnet was mounted on the CoreXY chassis

and its motion controlled by the stepper motor, all of which was secured beneath the playing

surface and out of sight of the user. This step would have involved a heavy amount of physical

building to construct the compartment for all of the electronics as well as mount the playing

surface so that it is level and at the necessary height so the electromagnet can attract and drag the

pieces across the board. We also theorized that the hard surface would need some

friction-reducing treatment to allow the pieces to more smoothly and easily glide across it.

Had we been able to come back these are the steps we would have taken to complete our

senior design project. Sadly, due to the cancellation of in-person classes for the remainder of our

senior year, our project remains in the state that it was as described in section 4.1.

5. Users Manual/Installation Manual

Wizard’s Chess ideally has very little initial setup. Everything needed to run the game is

self contained within the chess board. The motors are fixed to the base of the board and they’re

connected to the coreXY within the confines of the board. The electromagnet is fixed to the

coreXY. The individual chess pieces will already have the ferromagnetic disks attached.

Since the raspberry pi will already have the program for the motors, magnet, and chess

tracker, there will be no necessary installation for the initial setup. All that is needed is to plug

the board into any wall outlet and set the pieces on their respective tiles, the program would start

to run. There will also be a reset button on the board incase of some malfunction in initialization

of the board.

To tell if the board is on and functioning properly the user will hear the Harry Potter

theme music playing from the speakers. The motors will also calibrate at the start. Once the

23

board is on, the pieces must be set on their correct tiles(If you are new to playing chess go to the

Wizard’s Chess website and click the “How To Play” link). The way to start is to make the first

move. To make a move one must announce the name of the piece and the position they want it

moved to, for example, “knight to A5.” After making a move the board will be waiting for the

opposite player to make their move. The game will end only once a checkmate is reached. To

reset the game use the reset button located on the board.

Since we were unable to complete a finished model of the board there are a few other

details that would have improved the user experience and help with troubleshooting. Some of

these ideas include a “repeat move” option in case the magnet loses its connection to a piece mid

move. An LCD display could also be helpful as a backup user interface if something is not

working properly. It could display error messages if needed and at the very least alert the players

of who’s turn is next. The speaker would also be a finishing touch. It would play the theme

music at the start of the game and also once checkmate is reached.

6. To-Market Design Changes

There are many different changes that could be made to the chessboard if it were going to

market. In an ideal world, a functional prototype would have been made and then improvements

could be suggested off of that. However, since this is not the case, this section will describe what

the best possible outcome for this product could look like. There are many different subsystems

of this product, however, this will touch on three main sections: the mechanics, the presentation

and visual design, and the software.

Starting with the mechanics, currently, a coreXY system is being utilized with 3D printed

plastic sliders and 3D printer sliding wheels and a timing belt. The entire system runs on two

aluminum v-bars as the tracks. As this was being designed, significant issues arose on the

functionality of this system, especially related to the imprecision of the 3-D printed pieces and

the torque placed on the moving parts. In order to improve this, the 3-D printed pieces could be

swapped for metal shop cut aluminum pieces that have been specified to the exact dimensions

24

needed for the board. That way the entire system could be mounted and run smoothly. This

would add some additional weight, but not enough to significantly hamper movement. The

wheels would also benefit from the precision of these custom cut pieces because they would sit

exactly flush with the V-slot of the aluminum rail which would greatly improve the movement of

the system. In regards to the magnet, some difficulty was encountered with getting the magnetic

force required to move chess pieces, especially through the thin layer of birch plywood that was

the board. To improve this a stronger magnet could be purchased and combined with either a

thinner chessboard top or a top that has been coated in a substance like polyurethane to decrease

the coefficient of friction.

As for visual improvements, the entire system could then be mounted inside a wooden

case with a hinged lid. The hinged lid would allow for easy access to the mechanics for

inspections and maintenance. This would also protect the mechanics of the system significantly

more than it just being an open system. Additionally, a clear plexiglass top could be used if the

user desired to see the magnet mechanism move and work as they played with the chessboard. It

would just have to be engraved in such a way that simultaneously allows for visual of the chess

squares, but does not hamper the movement of the pieces. As a final touch, an LCD display

could be added into the side of the wooden chess box to display game stats such as time elapsed,

whose turn it is etc.

As for the software, there are countless functionality improvements that could be added

on. Currently, the system can recognize voices and interpret the specific words needed to move

the chess pieces across the board. This, in turn, is the input to the motors which then calculate

how far they need to turn and in what direction to accomplish the desired move. A functionality

that was not added on in addition to the microphone, was a speaker in order to have the

chessboard provide fun and engaging feedback on the game, similar to how the chess pieces in

Harry Potter talk. If WiFi capabilities were added and a user interface, such as an app were

developed, the two players could also play the game remotely, or just one of them could.

25

In summary, the proposed improvements are as follows:

● Mechanical

○ Custom Cut Aluminum Sliders

● Presentation

○ See-through Top

○ Chessboard Case and Mechanics Housing

○ Hinged Lid

○ LCD Display

● Software

○ Speaker Functionality

○ Wifi Functionality/App for Remote Gameplay

7. Conclusion

Wizard’s Chess was meant to showcase all of the knowledge and skills developed over

four years of electrical engineering undergraduate education at Notre Dame. Due to

circumstances far beyond the control of any person, COVID-19, the final product is far short of

what the team members had hoped and strived toward. Structurally, a rough first draft was

fulfilled and in the process of being tweaked to function to the standards set for the final product.

Each subsystem was brought to the point of functioning independently; the motors were

connected to drivers and functionally rotated to correspond to various directional movements, a

couple of electromagnets were tested to select the best fit for magnetism through the board to a

chess piece, and the voice recognition system was in the process of being downloaded to

function with a microphone circuit in the chess board. Moving beyond the physical aspects, code

was developed for every aspect of the process, from basic chess mechanics and tracking to voice

recognition and interpretation. Overall, the parts were all in place to bring together a useful and

fully functional final product. Our hope is that our documentation and detailed reports have set

the groundwork for future students to complete what we were unfortunately prohibited from

26

finishing. Wizard’s Chess has the potential to be an amazing showcase of ingenuity, creativity,

and overall a fun way to play chess.

8. Appendices

8.1 Voice.py
import speech_recognition as sr

#%%
'''
 // Voice Recognition (Speech-to-Text) - Google Speech Recognition
API
 -> This API converts spoken text (microphone) into written text
(Python strings)
 -> Personal or testing purposes only
 -> Generic key is given by default (it may be revoked by Google at
any time)
 -> If using API key, quota for your own key is 50 requests per day
'''

#%%

def recognize_speech_from_mic (recognizer, microphone):
 """Transcribe speech from recorded from ̀microphone`.

 Returns a dictionary with three keys:
 "success": a boolean indicating whether or not the API request
was
 successful
 "error": ̀None` if no error occured, otherwise a string
containing
 an error message if the API could not be reached or
 speech was unrecognizable
 "transcription": ̀None` if speech could not be transcribed,

27

 otherwise a string containing the transcribed text
 """
 # check that recognizer and microphone arguments are appropriate
type
 if not isinstance(recognizer, sr.Recognizer):
 raise TypeError("`recognizer` must be ̀Recognizer` instance")

 if not isinstance(microphone, sr.Microphone):
 raise TypeError("`microphone` must be ̀Microphone` instance")

 # adjust the recognizer sensitivity to ambient noise and record
audio
 # from the microphone
 with microphone as source:
 recognizer.adjust_for_ambient_noise(source) # # analyze the
audio source for 1 second
 audio = recognizer.listen(source)

 # set up the response object
 response = {
 "success" : True ,
 "error" : None ,
 "transcription" : None
 }

 # try recognizing the speech in the recording
 # if a RequestError or UnknownValueError exception is caught,
 # update the response object accordingly
 try :
 response["transcription"] =
recognizer.recognize_google(audio)
 except sr.RequestError:
 # API was unreachable or unresponsive
 response["success"] = False
 response["error"] = "API unavailable/unresponsive"
 except sr.UnknownValueError:
 # speech was unintelligible
 response["error"] = "Unable to recognize speech"

28

 return response

#%%

def main ():
 recognizer = sr.Recognizer()
 mic = sr.Microphone(device_index= 1)
 response = recognize_speech_from_mic(recognizer, mic)
 print('\nSuccess : {}\nError : {}\n\nText from
Speech\n{}\n\n{}' \
 .format(response['success'],
 response['error'],
 '-' * 17 ,
 response['transcription']))
 return (response['transcription'])

if __name__ == "__main__" :
 main()

8.2 termcolor.py

coding: utf-8
Copyright (c) 2008-2011 Volvox Development Team

Permission is hereby granted, free of charge, to any
person obtaining a copy
of this software and associated documentation files (the
"Software"), to deal
in the Software without restriction, including without
limitation the rights
to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell
copies of the Software, and to permit persons to whom the

29

Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice
shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN
THE SOFTWARE.

Author: Konstantin Lepa <konstantin.lepa@gmail.com>

"""ANSII Color formatting for output in terminal."""

from __future__ import print_function
import os

__ALL__ = ['colored' , 'cprint']

VERSION = (1 , 1 , 0)

30

ATTRIBUTES = dict(
 list(
 zip(
 [
 'bold' ,
 'dark' ,
 '' ,
 'underline' ,
 'blink' ,
 '' ,
 'reverse' ,
 'concealed'
],
 list(range(1 , 9))
)
)
)
del ATTRIBUTES['']

HIGHLIGHTS = dict(
 list(
 zip(
 [
 'on_grey' ,
 'on_red' ,
 'on_green' ,
 'on_yellow' ,
 'on_blue' ,
 'on_magenta' ,
 'on_cyan' ,
 'on_white'

31

],
 list(range(40 , 48))
)
)
)

COLORS = dict(
 list(
 zip(
 [
 'grey' ,
 'red' ,
 'green' ,
 'yellow' ,
 'blue' ,
 'magenta' ,
 'cyan' ,
 'white' ,
],
 list(range(30 , 38))
)
)
)

RESET = '\033[0m'

def colored (text, color=None, on_color=None, attrs=None):
 """Colorize text.

 Available text colors:
 red, green, yellow, blue, magenta, cyan, white.

32

 Available text highlights:
 on_red, on_green, on_yellow, on_blue, on_magenta,
on_cyan, on_white.

 Available attributes:
 bold, dark, underline, blink, reverse, concealed.

 Example:
 colored('Hello, World!', 'red', 'on_grey', ['blue',
'blink'])
 colored('Hello, World!', 'green')
 """
 if os.getenv('ANSI_COLORS_DISABLED') is None :
 fmt_str = '\033[%dm%s'
 if color is not None :
 text = fmt_str % (COLORS[color], text)

 if on_color is not None :
 text = fmt_str % (HIGHLIGHTS[on_color], text)

 if attrs is not None :
 for attr in attrs:
 text = fmt_str % (ATTRIBUTES[attr], text)

 text += RESET
 return text

def cprint (text, color=None, on_color=None, attrs=None,
**kwargs):
 """Print colorize text.

33

 It accepts arguments of print function.
 """

 print((colored(text, color, on_color, attrs)),
**kwargs)

if __name__ == '__main__' :
 print('Current terminal type: %s' % os.getenv('TERM'))
 print('Test basic colors:')
 cprint('Grey color' , 'grey')
 cprint('Red color' , 'red')
 cprint('Green color' , 'green')
 cprint('Yellow color' , 'yellow')
 cprint('Blue color' , 'blue')
 cprint('Magenta color' , 'magenta')
 cprint('Cyan color' , 'cyan')
 cprint('White color' , 'white')
 print(('-' * 78))

 print('Test highlights:')
 cprint('On grey color' , on_color= 'on_grey')
 cprint('On red color' , on_color= 'on_red')
 cprint('On green color' , on_color= 'on_green')
 cprint('On yellow color' , on_color= 'on_yellow')
 cprint('On blue color' , on_color= 'on_blue')
 cprint('On magenta color' , on_color= 'on_magenta')
 cprint('On cyan color' , on_color= 'on_cyan')
 cprint('On white color' , color= 'grey' ,
on_color= 'on_white')
 print('-' * 78)

34

 print('Test attributes:')
 cprint('Bold grey color' , 'grey' , attrs=['bold'])
 cprint('Dark red color' , 'red' , attrs=['dark'])
 cprint('Underline green color' , 'green' ,
attrs=['underline'])
 cprint('Blink yellow color' , 'yellow' , attrs=['blink'])
 cprint('Reversed blue color' , 'blue' ,
attrs=['reverse'])
 cprint('Concealed Magenta color' , 'magenta' ,
attrs=['concealed'])
 cprint('Bold underline reverse cyan color' , 'cyan' ,
 attrs=['bold' , 'underline' , 'reverse'])
 cprint('Dark blink concealed white color' , 'white' ,
 attrs=['dark' , 'blink' , 'concealed'])
 print(('-' * 78))

 print('Test mixing:')
 cprint('Underline red on grey color' , 'red' , 'on_grey' ,
 ['underline'])
 cprint('Reversed green on red color' , 'green' ,
'on_red' , ['reverse'])

8.3 Rook.py

from Piece import Piece
from Coordinate import Coordinate as C

WHITE = True
BLACK = False

35

class Rook (Piece):

 stringRep = 'R'
 value = 5

 def __init__ (self, board, side, position,
movesMade= 0):
 super(Rook, self).__init__(board, side, position)
 self.movesMade = movesMade

 def getPossibleMoves (self):
 currentPosition = self.position

 directions = [C(0 , 1), C(0 , -1), C(1 , 0), C(-1 , 0)]
 for direction in directions:
 for move in
self.movesInDirectionFromPos(currentPosition,

direction, self.side):
 yield move

8.4 Queen.py

from Piece import Piece
from Coordinate import Coordinate as C

WHITE = True
BLACK = False

36

class Queen (Piece):

 stringRep = 'Q'
 value = 9

 def __init__ (self, board, side, position, movesMade= 0):
 super(Queen, self).__init__(board, side, position)
 self.movesMade = movesMade

 def getPossibleMoves (self):
 currentPosition = self.position

 directions = [C(0 , 1), C(0 , -1), C(1 , 0), C(-1 , 0),
C(1 , 1),
 C(1 , -1), C(-1 , 1), C(-1 , -1)]
 for direction in directions:
 for move in
self.movesInDirectionFromPos(currentPosition,

direction, self.side):
 yield move

8.5 Piece.py

from Coordinate import Coordinate as C
from Move import Move

37

WHITE = True
BLACK = False
X = 0
Y = 1

class Piece :

 def __init__ (self, board, side, position, movesMade= 0):
 self.board = board
 self.side = side
 self.position = position
 self.movesMade = 0

 def __str__ (self):
 sideString = 'White' if self.side == WHITE else
'Black'
 return 'Type : ' + type(self).__name__ + \
 ' - Position : ' + str(self.position) + \
 " - Side : " + sideString + \
 ' -- Value : ' + str(self.value) + \
 " -- Moves made : " + str(self.movesMade)

 def movesInDirectionFromPos (self, pos, direction,
side):
 for dis in range(1 , 8):
 movement = C(dis * direction[X], dis *
direction[Y])
 newPos = pos + movement
 if self.board.isValidPos(newPos):
 pieceAtNewPos =
self.board.pieceAtPosition(newPos)

38

 if pieceAtNewPos is None :
 yield Move(self, newPos)

 elif pieceAtNewPos is not None :
 if pieceAtNewPos.side != side:
 yield Move(self, newPos,
pieceToCapture=pieceAtNewPos)
 return

 def __eq__ (self, other):
 if self.board == other.board and \
 self.side == other.side and \
 self.position == other.position and \
 self.__class__ == other.__class__:
 return True
 return False

 def copy (self):
 cpy = self.__class__(self.board, self.side,
self.position,
 movesMade=self.movesMade)
 return cpy

8.6 Pawn.py

39

from Rook import Rook
from Bishop import Bishop
from Knight import Knight
from Queen import Queen

from Piece import Piece
from Coordinate import Coordinate as C
from Move import Move

WHITE = True
BLACK = False

class Pawn (Piece):

 stringRep = 'P'
 value = 1

 def __init__ (self, board, side, position,
movesMade= 0):
 super(Pawn, self).__init__(board, side, position)
 self.movesMade = movesMade

 # @profile
 def getPossibleMoves (self):
 currentPosition = self.position

 # Pawn moves one up
 movement = C(0 , 1) if self.side == WHITE else C(0 ,
-1)
 advanceOnePosition = currentPosition + movement
 if self.board.isValidPos(advanceOnePosition):

40

 # Promotion moves
 if
self.board.pieceAtPosition(advanceOnePosition) is None :
 col = advanceOnePosition[1]
 if col == 7 or col == 0 :
 piecesForPromotion = \
 [Rook(self.board, self.side,
advanceOnePosition),
 Knight(self.board, self.side,
advanceOnePosition),
 Bishop(self.board, self.side,
advanceOnePosition),
 Queen(self.board, self.side,
advanceOnePosition)]
 for piece in piecesForPromotion:
 move = Move(self,
advanceOnePosition)
 move.promotion = True
 move.specialMovePiece = piece
 yield move
 else :
 yield Move(self, advanceOnePosition)

 # Pawn moves two up
 if self.movesMade == 0 :
 movement = C(0 , 2) if self.side == WHITE else
C(0 , -2)
 advanceTwoPosition = currentPosition + movement
 if self.board.isValidPos(advanceTwoPosition):
 if
self.board.pieceAtPosition(advanceTwoPosition) is None and
\

41

self.board.pieceAtPosition(advanceOnePosition) is None :
 yield Move(self, advanceTwoPosition)

 # Pawn takes
 movements = [C(1 , 1), C(-1 , 1)] \
 if self.side == WHITE else [C(1 , -1), C(-1 ,
-1)]

 for movement in movements:
 newPosition = self.position + movement
 if self.board.isValidPos(newPosition):
 pieceToTake =
self.board.pieceAtPosition(newPosition)
 if pieceToTake and pieceToTake.side !=
self.side:
 col = newPosition[1]
 # Promotions
 if col == 7 or col == 0 :
 piecesForPromotion = \
 [Rook(self.board, self.side,
newPosition),
 Knight(self.board, self.side,
newPosition),
 Bishop(self.board, self.side,
newPosition),
 Queen(self.board, self.side,
newPosition)]
 for piece in piecesForPromotion:
 move = Move(self, newPosition,
pieceToCapture=pieceToTake)
 move.promotion = True

42

 move.specialMovePiece = piece
 yield move
 else :
 yield Move(self, newPosition,

pieceToCapture=pieceToTake)

 # En passant
 movements = [C(1 , 1), C(-1 , 1)] \
 if self.side == WHITE else [C(1 , -1), C(-1 ,
-1)]
 for movement in movements:
 posBesidePawn = self.position + C(movement[0],
0)
 if self.board.isValidPos(posBesidePawn):
 pieceBesidePawn =
self.board.pieceAtPosition(posBesidePawn)
 lastPieceMoved =
self.board.getLastPieceMoved()
 lastMoveWasAdvanceTwo = False
 lastMove = self.board.getLastMove()

 if lastMove:
 if lastMove.newPos - lastMove.oldPos ==
C(0 , 2) or \
 lastMove.newPos - lastMove.oldPos ==
C(0 , -2):
 lastMoveWasAdvanceTwo = True

 if pieceBesidePawn and \
 pieceBesidePawn.stringRep == 'P' and \
 pieceBesidePawn.side != self.side and \

43

 lastPieceMoved is pieceBesidePawn and \
 lastMoveWasAdvanceTwo:
 move = Move(self, self.position +
movement,

pieceToCapture=pieceBesidePawn)
 move.passant = True
 move.specialMovePiece = pieceBesidePawn
 yield move

8.7 MoveNode.py

class MoveNode :

 def __init__ (self, move, children, parent):
 self.move = move
 self.children = children
 self.parent = parent
 self.pointAdvantage = None
 self.depth = 1

 def __str__ (self):
 stringRep = "Move : " + str(self.move) + \
 " Point advantage : " +
str(self.pointAdvantage) + \
 " Checkmate : " +
str(self.move.checkmate)
 stringRep += "\n"

 for child in self.children:

44

 stringRep += " " * self.getDepth() * 4
 stringRep += str(child)

 return stringRep

 def __gt__ (self, other):
 if self.move.checkmate and not
other.move.checkmate:
 return True
 if not self.move.checkmate and
other.move.checkmate:
 return False
 if self.move.checkmate and other.move.checkmate:
 return False
 return self.pointAdvantage > other.pointAdvantage

 def __lt__ (self, other):
 if self.move.checkmate and not
other.move.checkmate:
 return False
 if not self.move.checkmate and
other.move.checkmate:
 return True
 if self.move.stalemate and other.move.stalemate:
 return False
 return self.pointAdvantage < other.pointAdvantage

 def __eq__ (self, other):
 if self.move.checkmate and other.move.checkmate:
 return True
 return self.pointAdvantage == other.pointAdvantage

45

 def getHighestNode (self):
 highestNode = self
 while True :
 if highestNode.parent is not None :
 highestNode = highestNode.parent
 else :
 return highestNode

 def getDepth (self):
 depth = 1
 highestNode = self
 while True :
 if highestNode.parent is not None :
 highestNode = highestNode.parent
 depth += 1
 else :
 return depth

8.8 Move.py

class Move :

 def __init__ (self, piece, newPos, pieceToCapture=None):
 self.notation = None
 self.check = False
 self.checkmate = False
 self.kingsideCastle = False

46

 self.queensideCastle = False
 self.promotion = False
 self.passant = False
 self.stalemate = False

 self.piece = piece
 self.oldPos = piece.position
 self.newPos = newPos
 self.pieceToCapture = pieceToCapture
 # For en passant and castling
 self.specialMovePiece = None
 # For castling
 self.rookMove = None

 def __str__ (self):
 displayString = 'Old pos : ' + str(self.oldPos) + \
 ' -- New pos : ' + str(self.newPos)
 if self.notation:
 displayString += ' Notation : ' + self.notation
 if self.passant:
 displayString = 'Old pos : ' + str(self.oldPos)
+ \
 ' -- New pos : ' +
str(self.newPos) + \
 ' -- Pawn taken : ' +
str(self.specialMovePiece)
 displayString += ' PASSANT'
 return displayString

 def __eq__ (self, other):
 if self.oldPos == other.oldPos and \
 self.newPos == other.newPos and \

47

 self.specialMovePiece == other.specialMovePiece:
 if not self.specialMovePiece:
 return True
 if self.specialMovePiece and \
 self.specialMovePiece ==
other.specialMovePiece:
 return True
 else :
 return False
 else :
 return False

 def __hash__ (self):
 return hash((self.oldPos, self.newPos))

 def reverse (self):
 return Move(self.piece, self.piece.position,
 pieceToCapture=self.pieceToCapture)

8.9 main.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
from Board import Board
from InputParser import InputParser
from AI import AI
import sys

48

import random
import Voice
import speech_recognition as sr

import colorama
colorama.init()

from word2number import w2n

WHITE = True
BLACK = False

#%%
'''
 // Voice Recognition (Speech-to-Text) - Google Speech
Recognition API
 -> This API converts spoken text (microphone) into
written text (Python strings)
 -> Personal or testing purposes only
 -> Generic key is given by default (it may be revoked by
Google at any time)
 -> If using API key, quota for your own key is 50
requests per day
'''

#%%

def recognize_speech_from_mic (recognizer, microphone):

49

 """Transcribe speech from recorded from ̀microphone`.

 Returns a dictionary with three keys:
 "success": a boolean indicating whether or not the API
request was
 successful
 "error": ̀None` if no error occured, otherwise a
string containing
 an error message if the API could not be
reached or
 speech was unrecognizable
 "transcription": ̀None` if speech could not be
transcribed,
 otherwise a string containing the
transcribed text
 """
 # check that recognizer and microphone arguments are
appropriate type
 if not isinstance(recognizer, sr.Recognizer):
 raise TypeError("`recognizer` must be ̀Recognizer`
instance")

 if not isinstance(microphone, sr.Microphone):
 raise TypeError("`microphone` must be ̀Microphone`
instance")

 # adjust the recognizer sensitivity to ambient noise
and record audio
 # from the microphone
 with microphone as source:
 recognizer.adjust_for_ambient_noise(source) # #
analyze the audio source for 1 second

50

 audio = recognizer.listen(source)

 # set up the response object
 response = {
 "success" : True ,
 "error" : None ,
 "transcription" : None
 }

 # try recognizing the speech in the recording
 # if a RequestError or UnknownValueError exception is
caught,
 # update the response object accordingly
 try :
 response["transcription"] =
recognizer.recognize_google(audio)
 except sr.RequestError:
 # API was unreachable or unresponsive
 response["success"] = False
 response["error"] = "API unavailable/unresponsive"
 except sr.UnknownValueError:
 # speech was unintelligible
 response["error"] = "Unable to recognize speech"

 return response

#%%

This will recieve the string said by the user
This function has to convert/filter this string to a
specific chess movement
def translate_voice_string_to_chess_command (raw_string):

51

 string_to_parse = raw_string

 string_to_parse = string_to_parse.lower() # make the
whole string lowercase;

 #temp = re.findall(r'\d+', string_to_parse) # This will
get all the different numbers
 #numbers = list(map(int, temp))

 # Get the position to be moved to:
 # Look for the space (" ") and get until the end of the
string
 # E.g. Pawn a3 -> It should get a3
 try :
 position = string_to_parse[string_to_parse.index("
")+ 1 :]
 except :
 position = 99999

 king = string_to_parse.find("king")
 queen = string_to_parse.find("queen")
 bishop = string_to_parse.find("bishop")
 knight = string_to_parse.find("knight")
 night = string_to_parse.find("night")
 rook = string_to_parse.find("rook")
 pawn = string_to_parse.find("pawn")

 if (king != -1 and position != 99999):
 movement = "K" + position
 elif (queen != -1 and position != 99999):
 movement = "Q" + position

52

 elif (bishop != -1 and position != 99999):
 movement = "B" + position
 elif ((knight != -1 and position != 99999) or (night !=
-1 and position != 99999)):
 movement = "N" + position
 elif (rook != -1 and position != 99999):
 movement = "R" + position
 elif (pawn != -1 and position != 99999):
 movement = position
 else :
 movement = "not found"

 return movement

def prepare_xphysical_movement (pos_origin,pos_destiny):
 xaxis_difference = pos_destiny[0] - pos_origin[0]

 # Calculating Direction (i.e. if goes right or left)
 if xaxis_difference < 1 : # If true, this negative value
means that we move to left
 dir = 0 # 0 = left
 else :
 dir = 1 # 1 = right

 dist = abs(xaxis_difference) # Number of squares to
move
 axis = 0 # This will move on horizontal

 return axis,dir,dist

def prepare_yphysical_movement (pos_origin,pos_destiny):
 yaxis_difference = pos_destiny[1] - pos_origin[1]

53

 # Calculating Direction (i.e. if goes up or down)
 if yaxis_difference < 1 : # If true, this negative value
means that we move down
 dir = 0 # 0 = move down
 else :
 dir = 1 # 1 = move up

 dist = abs(yaxis_difference) # Number of squares to
move
 axis = 1 # This will move on vertical

 return axis,dir,dist

def askForPlayerSide ():
 playerChoiceInput = input(
 "What side would you like to play as [wB]?
").lower()
 if 'w' in playerChoiceInput:
 print("You will play as white")
 return WHITE
 else :
 print("You will play as black")
 return BLACK

def askForDepthOfAI ():
 depthInput = 2
 try :
 depthInput = int(input("How deep should the AI look
for moves?\n"

54

 "Warning : values above 3
will be very slow."
 " [2]? "))
 except KeyboardInterrupt:
 sys.exit()
 except :
 print("Invalid input, defaulting to 2")
 return depthInput

def printCommandOptions ():
 undoOption = 'u : undo last move'
 printLegalMovesOption = 'l : show all legal moves'
 randomMoveOption = 'r : make a random move'
 quitOption = 'quit : resign'
 moveOption = 'a3, Nc3, Qxa2, etc : make the move'
 options = [undoOption, printLegalMovesOption,
randomMoveOption,
 quitOption, moveOption, '' ,]
 print('\n' .join(options))

def printAllLegalMoves (board, parser):
 for move in
parser.getLegalMovesWithNotation(board.currentSide,
short= True):
 print(move.notation)

def getRandomMove (board, parser):
 legalMoves = board.getAllMovesLegal(board.currentSide)
 randomMove = random.choice(legalMoves)

55

 randomMove.notation =
parser.notationForMove(randomMove)
 return randomMove

def makeMove (move, board):
 print("Making move : " + move.notation)
 board.makeMove(move)

def printPointAdvantage (board):
 print("Currently, the point difference is : " +

str(board.getPointAdvantageOfSide(board.currentSide)))

def undoLastTwoMoves (board):
 if len(board.history) >= 2 :
 board.undoLastMove()
 board.undoLastMove()

def startGame (board, playerSide, ai):
 parser = InputParser(board, playerSide)
 while True :
 print()
 print(board)
 print()
 if board.isCheckmate():
 if board.currentSide == playerSide:
 print("Checkmate, you lost")
 else :

56

 print("Checkmate! You won!")
 return

 if board.isStalemate():
 if board.currentSide == playerSide:
 print("Stalemate")
 else :
 print("Stalemate")
 return

 if board.currentSide == playerSide:
 # printPointAdvantage(board)
 move = None
 command = input("It's your move."
 " Type '?' for options. ? ")

 # Block for getting the voice from the user
 recognizer = sr.Recognizer()
 mic = sr.Microphone(device_index= 1)
 print("Start Listening")
 response =
recognize_speech_from_mic(recognizer, mic)
 print("After response Listening")
 print('\nSuccess : {}\nError : {}\n\nText
from Speech\n{}\n\n{}' \
 .format(response['success'],
 response['error'],
 '-' * 17 ,
 response['transcription']))
 full_voice_command = response['transcription']
 print("End Listening")

57

 # End: Block for getting the voice from the
user

 # Make the necessary treatments to get from the
voice string the correct movement
 move_to_be_made =
translate_voice_string_to_chess_command(full_voice_command)

 if command.lower() == 'u' :
 undoLastTwoMoves(board)
 continue
 elif command.lower() == '?' :
 printCommandOptions()
 continue
 elif command.lower() == 'l' :
 printAllLegalMoves(board, parser)
 continue
 elif command.lower() == 'r' :
 move = getRandomMove(board, parser)
 elif command.lower() == 'exit' or
command.lower() == 'quit' :
 return
 try :
 move = parser.parse(move_to_be_made) #
originally this was parser.parse(command)
 except ValueError as error:
 print("%s" % error)
 continue
 makeMove(move, board)

 # Make Luke's part here:

58

 print(move.oldPos)
 print(move.newPos)

 xaxis, xdir, xdist =
prepare_xphysical_movement(move.oldPos,move.newPos)
 yaxis, ydir, ydist =
prepare_yphysical_movement(move.oldPos,move.newPos)

 print("Here")

 else :
 print("AI thinking...")
 move = ai.getBestMove()
 move.notation = parser.notationForMove(move)
 makeMove(move, board)

def twoPlayerGame (board):
 parserWhite = InputParser(board, WHITE)
 parserBlack = InputParser(board, BLACK)
 while True :
 print()
 print(board)
 print()
 if board.isCheckmate():
 print("Checkmate")
 return

 if board.isStalemate():
 print("Stalemate")
 return

 # printPointAdvantage(board)

59

 if board.currentSide == WHITE:
 parser = parserWhite
 else :
 parser = parserBlack
 move = None
 command = input("It's your move,
{}." .format(board.currentSideRep()) + \
 " Type '?' for options. ? ")

 if command.lower() == 'u' :
 undoLastTwoMoves(board)
 continue
 elif command.lower() == '?' :
 printCommandOptions()
 continue
 elif command.lower() == 'l' :
 printAllLegalMoves(board, parser)
 continue
 elif command.lower() == 'r' :
 move = getRandomMove(board, parser)
 elif command.lower() == 'exit' or command.lower()
== 'quit' :
 return
 try :
 move = parser.parse(command)
 except ValueError as error:
 print("%s" % error)
 continue
 makeMove(move, board)

60

board = Board()

try :
 if len(sys.argv) >= 2 and sys.argv[1] == "--two" :
 twoPlayerGame(board)
 else :
 playerSide = askForPlayerSide()
 print()
 aiDepth = askForDepthOfAI()
 opponentAI = AI(board, not playerSide, aiDepth)
 startGame(board, playerSide, opponentAI)
except KeyboardInterrupt:
 sys.exit()

8.10 Knight.py

from Piece import Piece
from Coordinate import Coordinate as C
from Move import Move

WHITE = True
BLACK = False

class Knight (Piece):

 stringRep = 'N'
 value = 3

61

 def __init__ (self, board, side, position,
movesMade= 0):
 super(Knight, self).__init__(board, side, position)
 self.movesMade = movesMade

 def getPossibleMoves (self):
 board = self.board
 currentPos = self.position
 movements = [C(2 , 1), C(2 , -1), C(-2 , 1), C(-2 ,
-1), C(1 , 2),
 C(1 , -2), C(-1 , -2), C(-1 , 2)]
 for movement in movements:
 newPos = currentPos + movement
 if board.isValidPos(newPos):
 pieceAtNewPos =
board.pieceAtPosition(newPos)
 if pieceAtNewPos is None :
 yield Move(self, newPos)
 elif pieceAtNewPos.side != self.side:
 yield Move(self, newPos,
pieceToCapture=pieceAtNewPos)

8.11 King.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
from Piece import Piece

62

from Move import Move
from Coordinate import Coordinate as C

WHITE = True
BLACK = False

class King (Piece):

 stringRep = 'K'
 value = 100

 def __init__ (self, board, side, position,
movesMade= 0):
 super(King, self).__init__(board, side, position)
 self.movesMade = movesMade

 def getPossibleMoves (self):
 currentPos = self.position
 movements = [C(0 , 1), C(0 , -1), C(1 , 0), C(-1 , 0),
C(1 , 1),
 C(1 , -1), C(-1 , 1), C(-1 , -1)]
 for movement in movements:
 newPos = currentPos + movement
 if self.board.isValidPos(newPos):
 pieceAtNewPos =
self.board.pieceAtPosition(newPos)
 if self.board.pieceAtPosition(newPos) is
None :
 yield Move(self, newPos)
 elif pieceAtNewPos.side != self.side:
 yield Move(self, newPos,

63

pieceToCapture=pieceAtNewPos)

 # Castling
 if self.movesMade == 0 :
 inCheck = False
 kingsideCastleBlocked = False
 queensideCastleBlocked = False
 kingsideCastleCheck = False
 queensideCastleCheck = False
 kingsideRookMoved = True
 queensideRookMoved = True

 kingsideCastlePositions = [self.position + C(1 ,
0),
 self.position + C(2 ,
0)]
 for pos in kingsideCastlePositions:
 if self.board.pieceAtPosition(pos):
 kingsideCastleBlocked = True
 break

 queensideCastlePositions = [self.position -
C(1 , 0),
 self.position -
C(2 , 0),
 self.position -
C(3 , 0)]
 for pos in queensideCastlePositions:
 if self.board.pieceAtPosition(pos):
 queensideCastleBlocked = True
 break

64

 if kingsideCastleBlocked and
queensideCastleBlocked:
 return

 otherSideMoves = \
 self.board.getAllMovesUnfiltered(not
self.side,

includeKing= False)
 for move in otherSideMoves:
 if move.newPos == self.position:
 inCheck = True
 break
 if move.newPos == self.position + C(1 , 0)
or \
 move.newPos == self.position + C(2 , 0):
 kingsideCastleCheck = True
 if move.newPos == self.position - C(1 , 0)
or \
 move.newPos == self.position - C(2 , 0):
 queensideCastleCheck = True

 kingsideRookPos = self.position + C(3 , 0)
 kingsideRook =
self.board.pieceAtPosition(kingsideRookPos) \
 if self.board.isValidPos(kingsideRookPos) \
 else None
 if kingsideRook and \
 kingsideRook.stringRep == 'R' and \
 kingsideRook.movesMade == 0 :
 kingsideRookMoved = False

65

 queensideRookPos = self.position - C(4 , 0)
 queensideRook =
self.board.pieceAtPosition(queensideRookPos) \
 if self.board.isValidPos(queensideRookPos)
\
 else None
 if queensideRook and \
 queensideRook.stringRep == 'R' and \
 queensideRook.movesMade == 0 :
 queensideRookMoved = False

 if not inCheck:
 if not kingsideCastleBlocked and \
 not kingsideCastleCheck and \
 not kingsideRookMoved:
 move = Move(self, self.position + C(2 ,
0))
 rookMove = Move(kingsideRook,
self.position + C(1 , 0))
 move.specialMovePiece = \

self.board.pieceAtPosition(kingsideRookPos)
 move.kingsideCastle = True
 move.rookMove = rookMove
 yield move
 if not queensideCastleBlocked and \
 not queensideCastleCheck and \
 not queensideRookMoved:
 move = Move(self, self.position - C(2 ,
0))
 rookMove = Move(queensideRook,
self.position - C(1 , 0))

66

 move.specialMovePiece = \

self.board.pieceAtPosition(queensideRookPos)
 move.queensideCastle = True
 move.rookMove = rookMove
 yield move

8.12 InputParser.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
import re
from Pawn import Pawn

class InputParser :

 def __init__ (self, board, side):
 self.board = board
 self.side = side

 def parse (self, humanInput):
 regexCoordinateNotation =
re.compile('(?i)[a-h][1-8][a-h][1-8][QRBN]?')
 if regexCoordinateNotation.match(humanInput):
 return
self.moveForCoordinateNotation(humanInput)
 regexAlgebraicNotation =
re.compile('(?i)0-0|0-0-0|(?:[KQRBNP]?[a-h]?[1-8]?x?[a-h][1
-8]|[Pa-h]x?[a-h])(?:=?[QRBN])?')

67

 if regexAlgebraicNotation.match(humanInput):
 return
self.moveForShortAlgebraicNotation(humanInput)
 if re.compile('(?i)O-O|O-O-O').match(humanInput):
 return
self.moveForShortAlgebraicNotation(humanInput.upper().repla
ce("O" , "0"))
 raise ValueError("Invalid move: %s" % humanInput)

 def moveForCoordinateNotation (self, notation):
 for move in self.board.getAllMovesLegal(self.side):
 if
self.board.getCoordinateNotationOfMove(move).lower() ==
notation.lower():
 move.notation = self.notationForMove(move)
 return move
 raise ValueError("Illegal move: %s" % notation)

 # Only handles SAN, not long-algebraic or descriptive
 def moveForShortAlgebraicNotation (self, notation):
 shortNotation = notation.replace("x" , "")
 moves = self.getLegalMovesWithNotation(self.side,
False)
 for move in moves:
 if move.notation.replace("x" , "") ==
shortNotation: # Bxc3 versus bxc3
 return move
 for move in moves:
 if move.notation.replace("x" , "").lower() ==
shortNotation.lower():
 return move
 moves = self.getLegalMovesWithNotation(self.side,

68

True)
 for move in moves:
 if move.notation.replace("x" , "") ==
shortNotation: # Bxc3 versus bxc3
 return move
 for move in moves:
 if move.notation.replace("x" , "").lower() ==
shortNotation.lower():
 return move
 shortNotation =
notation.lower().replace("p" , "").replace("=" , "")
 if
re.compile('[a-h][1-8]?[qrbn]?').match(shortNotation):
 for move in moves:
 if type(move.piece) is Pawn and not
move.pieceToCapture and
self.board.getCoordinateNotationOfMove(move).replace("=" , ""
).lower().endswith(shortNotation):
 return move
 for move in moves:
 if type(move.piece) is Pawn and not
move.pieceToCapture and re.sub("[1-8]" , "" ,
self.board.getCoordinateNotationOfMove(move)).replace("=" , "
").lower().endswith(shortNotation):
 return move # ASSUME lazy pawn move
(P)c is unambiguous
 shortNotation =
shortNotation.lower().replace("x" , "")
 if
re.compile('[a-h]?[a-h][1-8]?[qrbn]?').match(shortNotation)
:
 for move in moves:

69

 if type(move.piece) is Pawn and
move.pieceToCapture and
self.board.getCaptureNotation(move).replace("x" , "").lower()
.endswith(shortNotation):
 return move # ASSUME lazier pawn
capture (P)b(x)c3 is unambiguous
 for move in moves:
 if type(move.piece) is Pawn and
move.pieceToCapture and re.sub("[1-8]" , "" ,
self.board.getCaptureNotation(move).replace("x" , "")).lower(
).endswith(shortNotation):
 return move # ASSUME laziest pawn
capture (P)b(x)c is unambiguous
 raise ValueError("Illegal move: %s" % notation)

 def notationForMove (self, move):
 side = self.board.getSideOfMove(move)
 moves = self.getLegalMovesWithNotation(side)
 for m in moves:
 if m == move:
 return m.notation

 def getLegalMovesWithNotation (self, side, short=True):
 moves = []
 for legalMove in self.board.getAllMovesLegal(side):
 moves.append(legalMove)
 legalMove.notation =
self.board.getAlgebraicNotationOfMove(legalMove, short)

 duplicateNotationMoves =
self.duplicateMovesFromMoves(moves)
 for duplicateMove in duplicateNotationMoves:

70

 duplicateMove.notation = \

self.board.getAlgebraicNotationOfMoveWithFile(duplicateMove
, short)

 duplicateNotationMoves =
self.duplicateMovesFromMoves(moves)
 for duplicateMove in duplicateNotationMoves:
 duplicateMove.notation = \

self.board.getAlgebraicNotationOfMoveWithRank(duplicateMove
, short)

 duplicateNotationMoves =
self.duplicateMovesFromMoves(moves)
 for duplicateMove in duplicateNotationMoves:
 duplicateMove.notation = \

self.board.getAlgebraicNotationOfMoveWithFileAndRank(duplic
ateMove, short)

 return moves

 def duplicateMovesFromMoves (self, moves):
 return list(filter(
 lambda move:
 len([m for m in moves if m.notation ==
move.notation]) > 1 , moves))

71

8.13 Coordinate.py

class Coordinate (tuple):

 def __new__ (cls, *args):
 return tuple.__new__(cls, args)

 def __reduce__ (self):
 return (self.__class__, tuple(self))

 def __add__ (self, other):
 return Coordinate(self[0] + other[0], self[1] +
other[1])

 def __sub__ (self, other):
 return Coordinate(self[0] - other[0], self[1] -
other[1])

8.14 Board.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
from Pawn import Pawn
from Rook import Rook
from King import King
from Bishop import Bishop
from Knight import Knight

72

from Queen import Queen
from Coordinate import Coordinate as C
from termcolor import colored

from Move import Move

WHITE = True
BLACK = False

class Board :

 def __init__ (self, mateInOne=False, castleBoard=False,
 passant=False, promotion=False):
 self.pieces = []
 self.history = []
 self.points = 0
 self.currentSide = WHITE
 self.movesMade = 0
 self.checkmate = False

 if not mateInOne and not castleBoard and not
passant and not promotion:
 self.pieces.extend([Rook(self, BLACK, C(0 , 7)),
 Knight(self, BLACK, C(1 ,
7)),
 Bishop(self, BLACK, C(2 ,
7)),
 Queen(self, BLACK, C(3 ,
7)),
 King(self, BLACK, C(4 , 7)),
 Bishop(self, BLACK, C(5 ,

73

7)),
 Knight(self, BLACK, C(6 ,
7)),
 Rook(self, BLACK, C(7 ,
7))])
 for x in range(8):
 self.pieces.append(Pawn(self, BLACK, C(x,
6)))
 for x in range(8):
 self.pieces.append(Pawn(self, WHITE, C(x,
1)))
 self.pieces.extend([Rook(self, WHITE, C(0 , 0)),
 Knight(self, WHITE, C(1 ,
0)),
 Bishop(self, WHITE, C(2 ,
0)),
 Queen(self, WHITE, C(3 ,
0)),
 King(self, WHITE, C(4 , 0)),
 Bishop(self, WHITE, C(5 ,
0)),
 Knight(self, WHITE, C(6 ,
0)),
 Rook(self, WHITE, C(7 ,
0))])

 elif promotion:
 pawnToPromote = Pawn(self, WHITE, C(1 , 6))
 pawnToPromote.movesMade = 1
 kingWhite = King(self, WHITE, C(4 , 0))
 kingBlack = King(self, BLACK, C(3 , 2))
 self.pieces.extend([pawnToPromote, kingWhite,

74

kingBlack])

 elif passant:
 pawn = Pawn(self, WHITE, C(1 , 4))
 pawn2 = Pawn(self, BLACK, C(2 , 6))
 kingWhite = King(self, WHITE, C(4 , 0))
 kingBlack = King(self, BLACK, C(3 , 2))
 self.pieces.extend([pawn, pawn2, kingWhite,
kingBlack])
 self.history = []
 self.currentSide = BLACK
 self.points = 0
 self.movesMade = 0
 self.checkmate = False
 firstMove = Move(pawn2, C(2 , 4))
 self.makeMove(firstMove)
 self.currentSide = WHITE
 return

 def __str__ (self):
 return
self.wrapStringRep(self.makeStringRep(self.pieces))

 def undoLastMove (self):
 lastMove, pieceTaken = self.history.pop()

 if lastMove.queensideCastle or
lastMove.kingsideCastle:
 king = lastMove.piece
 rook = lastMove.specialMovePiece

 self.movePieceToPosition(king, lastMove.oldPos)

75

 self.movePieceToPosition(rook,
lastMove.rookMove.oldPos)

 king.movesMade -= 1
 rook.movesMade -= 1

 elif lastMove.passant:
 pawnMoved = lastMove.piece
 pawnTaken = pieceTaken
 self.pieces.append(pawnTaken)
 self.movePieceToPosition(pawnMoved,
lastMove.oldPos)
 pawnMoved.movesMade -= 1
 if pawnTaken.side == WHITE:
 self.points += 1
 if pawnTaken.side == BLACK:
 self.points -= 1

 elif lastMove.promotion:
 pawnPromoted = lastMove.piece
 promotedPiece =
self.pieceAtPosition(lastMove.newPos)
 self.pieces.remove(promotedPiece)
 if pieceTaken:
 if pieceTaken.side == WHITE:
 self.points += pieceTaken.value
 if pieceTaken.side == BLACK:
 self.points -= pieceTaken.value
 self.pieces.append(pieceTaken)
 self.pieces.append(pawnPromoted)
 if pawnPromoted.side == WHITE:
 self.points -= promotedPiece.value - 1

76

 elif pawnPromoted.side == BLACK:
 self.points += promotedPiece.value - 1
 pawnPromoted.movesMade -= 1

 else :
 pieceToMoveBack = lastMove.piece
 self.movePieceToPosition(pieceToMoveBack,
lastMove.oldPos)
 if pieceTaken:
 if pieceTaken.side == WHITE:
 self.points += pieceTaken.value
 if pieceTaken.side == BLACK:
 self.points -= pieceTaken.value
 self.addPieceToPosition(pieceTaken,
lastMove.newPos)
 self.pieces.append(pieceTaken)
 pieceToMoveBack.movesMade -= 1

 self.currentSide = not self.currentSide

 def isCheckmate (self):
 if len(self.getAllMovesLegal(self.currentSide)) ==
0 :
 for move in self.getAllMovesUnfiltered(not
self.currentSide):
 pieceToTake = move.pieceToCapture
 if pieceToTake and pieceToTake.stringRep ==
"K" :
 return True
 return False

 def isStalemate (self):

77

 if len(self.getAllMovesLegal(self.currentSide)) ==
0 :
 for move in self.getAllMovesUnfiltered(not
self.currentSide):
 pieceToTake = move.pieceToCapture
 if pieceToTake and pieceToTake.stringRep ==
"K" :
 return False
 return True
 return False

 def getLastMove (self):
 if self.history:
 return self.history[-1][0]

 def getLastPieceMoved (self):
 if self.history:
 return self.history[-1][0].piece

 def addMoveToHistory (self, move):
 pieceTaken = None
 if move.passant:
 pieceTaken = move.specialMovePiece
 self.history.append([move, pieceTaken])
 return
 pieceTaken = move.pieceToCapture
 if pieceTaken:
 self.history.append([move, pieceTaken])
 return

 self.history.append([move, None])

78

 def getCurrentSide (self):
 return self.currentSide

 def makeStringRep (self, pieces):
 stringRep = ''
 for y in range(7 , -1 , -1):
 for x in range(8):
 piece = None
 for p in pieces:
 if p.position == C(x, y):
 piece = p
 break
 pieceRep = ''
 if piece:
 side = piece.side
 color = 'blue' if side == WHITE else
'red'
 pieceRep = colored(piece.stringRep,
color)
 else :
 pieceRep = ' '
 stringRep += pieceRep + ' '
 stringRep += '\n'
 return stringRep.rstrip()

 def makeUnicodeStringRep (self, pieces):
 DISPLAY_LOOKUP = {
 "R" : '♜' ,
 "N" : '♞' ,
 "B" : '♝' ,
 "K" : '♚' ,
 "Q" : '♛' ,

79

 "P" : '♟' ,
 }

 stringRep = ''
 for y in range(7 , -1 , -1):
 for x in range(8):
 piece = None
 for p in pieces:
 if p.position == C(x, y):
 piece = p
 break
 on_color = 'on_cyan' if y % 2 == x % 2 else
'on_yellow'
 pieceRep = colored(' ' , on_color=on_color)
 if piece:
 side = piece.side
 color = 'white' if side == WHITE else
'grey'
 pieceRep = colored(piece.stringRep + '
' , color=color, on_color=on_color)
 stringRep += pieceRep
 stringRep += '\n'
 return stringRep.rstrip()

 def wrapStringRep (self, stringRep):
 sRep = '\n' .join(
 ['%d %s' % (8 -r, s.rstrip())
 for r, s in enumerate(stringRep.split('\n'))]
+
 [' ' * 21 , ' a b c d e f g h']
).rstrip()
 return sRep

80

 def rankOfPiece (self, piece):
 return str(piece.position[1] + 1)

 def fileOfPiece (self, piece):
 transTable = str.maketrans('01234567' , 'abcdefgh')
 return str(piece.position[0]).translate(transTable)

 def getCoordinateNotationOfMove (self, move):
 notation = ""
 notation += self.positionToHumanCoord(move.oldPos)
 notation += self.positionToHumanCoord(move.newPos)

 if move.promotion:
 notation +=
str(move.specialMovePiece.stringRep)

 return notation

 def getCaptureNotation (self, move, short=False):
 notation = ""
 pieceToMove = move.piece
 pieceToTake = move.pieceToCapture

 if type(pieceToMove) is Pawn:
 notation += self.fileOfPiece(pieceToMove)
 else :
 notation += pieceToMove.stringRep
 notation += 'x'
 if short:
 notation += pieceToTake.stringRep
 else :

81

 notation +=
self.positionToHumanCoord(move.newPos)

 if move.promotion:
 notation +=
str(move.specialMovePiece.stringRep)

 return notation

 def currentSideRep (self):
 return "White" if self.currentSide else "Black"

 def getAlgebraicNotationOfMove (self, move, short=True):
 notation = ""
 pieceToMove = move.piece
 pieceToTake = move.pieceToCapture

 if move.queensideCastle:
 return "0-0-0"

 if move.kingsideCastle:
 return "0-0"

 if not short or type(pieceToMove) is not Pawn:
 notation += pieceToMove.stringRep

 if pieceToTake is not None :
 if short and type(pieceToMove) is Pawn:
 notation += self.fileOfPiece(pieceToMove)
 notation += 'x'

 notation += self.positionToHumanCoord(move.newPos)

82

 if move.promotion:
 notation += "=" +
str(move.specialMovePiece.stringRep)

 return notation

 def getAlgebraicNotationOfMoveWithFile (self, move,
short=True):
 # TODO: Use self.getAlgebraicNotationOfMove instead
of repeating code
 notation = ""
 pieceToMove = self.pieceAtPosition(move.oldPos)
 pieceToTake = self.pieceAtPosition(move.newPos)

 if not short or type(pieceToMove) is not Pawn:
 notation += pieceToMove.stringRep
 notation += self.fileOfPiece(pieceToMove)

 if pieceToTake is not None :
 notation += 'x'

 notation += self.positionToHumanCoord(move.newPos)
 return notation

 def getAlgebraicNotationOfMoveWithRank (self, move,
short=True):
 # TODO: Use self.getAlgebraicNotationOfMove instead
of repeating code
 notation = ""
 pieceToMove = self.pieceAtPosition(move.oldPos)
 pieceToTake = self.pieceAtPosition(move.newPos)

83

 if not short or type(pieceToMove) is not Pawn:
 notation += pieceToMove.stringRep

 notation += self.rankOfPiece(pieceToMove)

 if pieceToTake is not None :
 if short and type(pieceToMove) is Pawn:
 notation += self.fileOfPiece(pieceToMove)
 notation += 'x'

 notation += self.positionToHumanCoord(move.newPos)
 return notation

 def getAlgebraicNotationOfMoveWithFileAndRank (self,
move, short=True):
 # TODO: Use self.getAlgebraicNotationOfMove instead
of repeating code
 notation = ""
 pieceToMove = self.pieceAtPosition(move.oldPos)
 pieceToTake = self.pieceAtPosition(move.newPos)

 if not short or type(pieceToMove) is not Pawn:
 notation += pieceToMove.stringRep

 notation += self.fileOfPiece(pieceToMove)
 notation += self.rankOfPiece(pieceToMove)

 if pieceToTake is not None :
 notation += 'x'

 notation += self.positionToHumanCoord(move.newPos)

84

 return notation

 def humanCoordToPosition (self, coord):
 transTable = str.maketrans('abcdefgh' , '12345678')
 coord = coord.translate(transTable)
 coord = [int(c) -1 for c in coord]
 pos = C(coord[0], coord[1])
 return pos

 def positionToHumanCoord (self, pos):
 transTable = str.maketrans('01234567' , 'abcdefgh')
 notation = str(pos[0]).translate(transTable) +
str(pos[1]+ 1)
 return notation

 def isValidPos (self, pos):
 if 0 <= pos[0] <= 7 and 0 <= pos[1] <= 7 :
 return True
 else :
 return False

 def getSideOfMove (self, move):
 return move.piece.side

 def getPositionOfPiece (self, piece):
 for y in range(8):
 for x in range(8):
 if self.boardArray[y][x] is piece:
 return C(x, 7 -y)

 def pieceAtPosition (self, pos):
 for piece in self.pieces:

85

 if piece.position == pos:
 return piece

 def movePieceToPosition (self, piece, pos):
 piece.position = pos

 def addPieceToPosition (self, piece, pos):
 piece.position = pos

 def clearPosition (self, pos):
 x, y = self.coordToLocationInArray(pos)
 self.boardArray[x][y] = None

 def coordToLocationInArray (self, pos):
 return (7 -pos[1], pos[0])

 def locationInArrayToCoord (self, loc):
 return (loc[1], 7 -loc[0])

 def makeMove (self, move):
 self.addMoveToHistory(move)
 if move.kingsideCastle or move.queensideCastle:
 kingToMove = move.piece
 rookToMove = move.specialMovePiece
 self.movePieceToPosition(kingToMove,
move.newPos)
 self.movePieceToPosition(rookToMove,
move.rookMove.newPos)
 kingToMove.movesMade += 1
 rookToMove.movesMade += 1

 elif move.passant:

86

 pawnToMove = move.piece
 pawnToTake = move.specialMovePiece
 pawnToMove.position = move.newPos
 self.pieces.remove(pawnToTake)
 pawnToMove.movesMade += 1

 elif move.promotion:
 pieceToTake = move.pieceToCapture
 self.pieces.remove(move.piece)
 if pieceToTake:
 if pieceToTake.side == WHITE:
 self.points -= pieceToTake.value
 if pieceToTake.side == BLACK:
 self.points += pieceToTake.value
 self.pieces.remove(pieceToTake)

 self.pieces.append(move.specialMovePiece)
 if move.piece.side == WHITE:
 self.points += move.specialMovePiece.value
- 1
 if move.piece.side == BLACK:
 self.points -= move.specialMovePiece.value
- 1
 move.piece.movesMade += 1

 else :
 pieceToMove = move.piece
 pieceToTake = move.pieceToCapture

 if pieceToTake:
 if pieceToTake.side == WHITE:
 self.points -= pieceToTake.value

87

 if pieceToTake.side == BLACK:
 self.points += pieceToTake.value
 self.pieces.remove(pieceToTake)

 self.movePieceToPosition(pieceToMove,
move.newPos)
 pieceToMove.movesMade += 1
 self.movesMade += 1
 self.currentSide = not self.currentSide

 def getPointValueOfSide (self, side):
 points = 0
 for piece in self.pieces:
 if piece.side == side:
 points += piece.value
 return points

 def getPointAdvantageOfSide (self, side):
 pointAdvantage = self.getPointValueOfSide(side) - \
 self.getPointValueOfSide(not side)
 return pointAdvantage
 if side == WHITE:
 return self.points
 if side == BLACK:
 return -self.points

 def getAllMovesUnfiltered (self, side,
includeKing=True):
 unfilteredMoves = []
 for piece in self.pieces:
 if piece.side == side:
 if includeKing or piece.stringRep != 'K' :

88

 for move in piece.getPossibleMoves():
 unfilteredMoves.append(move)
 return unfilteredMoves

 def testIfLegalBoard (self, side):
 for move in self.getAllMovesUnfiltered(side):
 pieceToTake = move.pieceToCapture
 if pieceToTake and pieceToTake.stringRep ==
'K' :
 return False
 return True

 def moveIsLegal (self, move):
 side = move.piece.side
 self.makeMove(move)
 isLegal = self.testIfLegalBoard(not side)
 self.undoLastMove()
 return isLegal

 # TODO: remove side parameter, unneccesary
 def getAllMovesLegal (self, side):
 unfilteredMoves =
list(self.getAllMovesUnfiltered(side))
 legalMoves = []
 for move in unfilteredMoves:
 if self.moveIsLegal(move):
 legalMoves.append(move)
 return legalMoves

8.15 Bishop.py

from Piece import Piece

89

from Coordinate import Coordinate as C

WHITE = True
BLACK = False

class Bishop (Piece):

 stringRep = 'B'
 value = 3

 def __init__ (self, board, side, position, movesMade= 0):
 super(Bishop, self).__init__(board, side, position)
 self.movesMade = movesMade

 def getPossibleMoves (self):
 currentPosition = self.position
 directions = [C(1 , 1), C(1 , -1), C(-1 , 1), C(-1 ,
-1)]
 for direction in directions:
 for move in
self.movesInDirectionFromPos(currentPosition,

direction, self.side):
 yield move

8.16 AI.py

90

from Board import Board
from MoveNode import MoveNode
from InputParser import InputParser
import copy
import random
from multiprocessing import Pool

WHITE = True
BLACK = False

class AI :

 depth = 1
 board = None
 side = None
 movesAnalyzed = 0

 def __init__ (self, board, side, depth):
 self.board = board
 self.side = side
 self.depth = depth
 self.parser = InputParser(self.board, self.side)

 def getFirstMove (self, side):
 move = list(self.board.getAllMovesLegal(side))[0]
 return move

 def getAllMovesLegalConcurrent (self, side):
 p = Pool(8)
 unfilteredMovesWithBoard = \

91

 [(move, copy.deepcopy(self.board))
 for move in
self.board.getAllMovesUnfiltered(side)]
 legalMoves = p.starmap(self.returnMoveIfLegal,
 unfilteredMovesWithBoard)
 p.close()
 p.join()
 return list(filter(None , legalMoves))

 def minChildrenOfNode (self, node):
 lowestNodes = []
 for child in node.children:
 if not lowestNodes:
 lowestNodes.append(child)
 elif child < lowestNodes[0]:
 lowestNodes = []
 lowestNodes.append(child)
 elif child == lowestNodes[0]:
 lowestNodes.append(child)
 return lowestNodes

 def maxChildrenOfNode (self, node):
 highestNodes = []
 for child in node.children:
 if not highestNodes:
 highestNodes.append(child)
 elif child < highestNodes[0]:
 highestNodes = []
 highestNodes.append(child)
 elif child == highestNodes[0]:
 highestNodes.append(child)
 return highestNodes

92

 def getRandomMove (self):
 legalMoves =
list(self.board.getAllMovesLegal(self.side))
 randomMove = random.choice(legalMoves)
 return randomMove

 def generateMoveTree (self):
 moveTree = []
 for move in self.board.getAllMovesLegal(self.side):
 moveTree.append(MoveNode(move, [], None))

 for node in moveTree:
 self.board.makeMove(node.move)
 self.populateNodeChildren(node)
 self.board.undoLastMove()
 return moveTree

 def populateNodeChildren (self, node):
 node.pointAdvantage =
self.board.getPointAdvantageOfSide(self.side)
 node.depth = node.getDepth()
 if node.depth == self.depth:
 return

 side = self.board.currentSide

 legalMoves = self.board.getAllMovesLegal(side)
 if not legalMoves:
 if self.board.isCheckmate():
 node.move.checkmate = True
 return

93

 elif self.board.isStalemate():
 node.move.stalemate = True
 node.pointAdvantage = 0
 return
 raise Exception()

 for move in legalMoves:
 self.movesAnalyzed += 1
 node.children.append(MoveNode(move, [], node))
 self.board.makeMove(move)
 self.populateNodeChildren(node.children[-1])
 self.board.undoLastMove()

 def getOptimalPointAdvantageForNode (self, node):
 if node.children:
 for child in node.children:
 child.pointAdvantage = \

self.getOptimalPointAdvantageForNode(child)

 # If the depth is divisible by 2,
 # it's a move for the AI's side, so return max
 if node.children[0].depth % 2 == 1 :
 return (max(node.children).pointAdvantage)
 else :
 return (min(node.children).pointAdvantage)
 else :
 return node.pointAdvantage

 def getBestMove (self):
 moveTree = self.generateMoveTree()
 bestMoves = self.bestMovesWithMoveTree(moveTree)

94

 randomBestMove = random.choice(bestMoves)
 randomBestMove.notation =
self.parser.notationForMove(randomBestMove)
 return randomBestMove

 def makeBestMove (self):
 self.board.makeMove(self.getBestMove())

 def bestMovesWithMoveTree (self, moveTree):
 bestMoveNodes = []
 for moveNode in moveTree:
 moveNode.pointAdvantage = \

self.getOptimalPointAdvantageForNode(moveNode)
 if not bestMoveNodes:
 bestMoveNodes.append(moveNode)
 elif moveNode > bestMoveNodes[0]:
 bestMoveNodes = []
 bestMoveNodes.append(moveNode)
 elif moveNode == bestMoveNodes[0]:
 bestMoveNodes.append(moveNode)

 return [node.move for node in bestMoveNodes]

 def isValidMove (self, move, side):
 for legalMove in self.board.getAllMovesLegal(side):
 if move == legalMove:
 return True
 return False

 def makeRandomMove (self):
 moveToMake = self.getRandomMove()

95

 self.board.makeMove(moveToMake)

if __name__ == "__main__" :
 mainBoard = Board()
 ai = AI(mainBoard, True , 3)
 print(mainBoard)
 ai.makeBestMove()
 print(mainBoard)
 print(ai.movesAnalyzed)
 print(mainBoard.movesMade)

8.17 cleanedRaspStepper.py

Rasp Pi Set Up
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)

Declare pin functions on RedBoard
STP1 = 20 # motor moves on this pin rising edge
DIR1 = 21 # DIR pin low = CCW, high CW when open side
motor connector faces in
MS11 = 16
MS12 = 12
EN1 = 25 # Low to Enable mtor, High to disable

STP2 = 19 # motor moves on this pin rising edge
DIR2 = 26 # DIR pin low = CCW, high CW when open side
motor connector faces in
MS21 = 13
MS22 = 6

96

EN2 = 5 # Low to Enable mtor, High to disable

Setup pins
GPIO.setup(STP1, GPIO.OUT)
GPIO.setup(DIR1, GPIO.OUT)
GPIO.setup(MS11, GPIO.OUT)
GPIO.setup(MS12, GPIO.OUT)
GPIO.setup(EN1, GPIO.OUT)

GPIO.setup(STP2, GPIO.OUT)
GPIO.setup(DIR2, GPIO.OUT)
GPIO.setup(MS21, GPIO.OUT)
GPIO.setup(MS22, GPIO.OUT)
GPIO.setup(EN2, GPIO.OUT)

Declare Constants
stepPeriod = .0005 # time between of motor steps in sec
stepsPerGrid = 200 # number of steps to move one grid
square
 # stepsPerGrid = squareWidth in cm * 40

Function to move Gantry horizontally; motors same
direction
def horizMove (dir, dist): # dir = -1 means left, +1 means
right, dist in number of grid squares
 try :
 # Set directions of both motors to match desired
motion
 GPIO.output(DIR1, GPIO.LOW) if dir< 0 else
GPIO.output(DIR1, GPIO.HIGH)
 GPIO.output(DIR2, GPIO.LOW) if dir< 0 else
GPIO.output(DIR2, GPIO.HIGH)

97

 numSteps = stepsPerGrid*dist

 for x in range (0 ,numSteps):
 GPIO.output(STP1,GPIO.HIGH) #Trigger one step
forward
 GPIO.output(STP2,GPIO.HIGH)
 time.sleep(stepPeriod/ 2) # /2 b/c only
move on rising edge
 GPIO.output(STP1,GPIO.LOW) #Pull step pin low
so it can be triggered again
 GPIO.output(STP2,GPIO.LOW)
 time.sleep(stepPeriod/ 2)

 print("Returning to Main")
 time.sleep(1)
 main()

 except KeyboardInterrupt: # If CTRL+C is
pressed, exit cleanly:
 GPIO.cleanup() # cleanup all
GPIO
 finally : # force to
always clean up on way out
 GPIO.cleanup() # cleanup all
GPIO

Function to move Gantry Vertically; motors oppposing
directions
def vertMove (dir, dist): # dir = -1 means down, +1 means
up, dist in number of grid squares
 try :

98

 # Set directions of both motors to match desired
motion
 GPIO.output(DIR1, GPIO.LOW) if dir< 0 else
GPIO.output(DIR1, GPIO.HIGH)
 GPIO.output(DIR2, GPIO.HIGH) if dir< 0 else
GPIO.output(DIR2, GPIO.LOW)
 numSteps = stepsPerGrid*dist

 for x in range (0 ,numSteps):
 GPIO.output(STP1,GPIO.HIGH) #Trigger one
step forward
 GPIO.output(STP2,GPIO.HIGH)
 time.sleep(stepPeriod/ 2) # /2 b/c only
move on rising edge
 GPIO.output(STP1,GPIO.LOW) # Pull step pin
low so it can be triggered again
 GPIO.output(STP2,GPIO.LOW)
 time.sleep(stepPeriod/ 2)

 print("Returning to Main")
 time.sleep(1)
 main()

 except KeyboardInterrupt: # If CTRL+C is
pressed, exit cleanly:
 GPIO.cleanup() # cleanup all
GPIO
 finally : # force to
always clean up on way out
 GPIO.cleanup() # cleanup all
GPIO

99

main loop, get input on axis, direction, and distance
def main ():
 axis = input("Choose Axis: -1 for vertical, +1 for
horizontal: ")
 if axis == 1 :
 dir = input("Enter direction: -1 for Left, +1 for
Right: ")
 dist = input("Enter distance: number of grid
squares: ")
 horizMove(dir,dist)
 elif axis == -1 :
 dir = input("Enter direction: -1 for Down, +1 for
Up: ")
 dist = input("Enter distance: number of grid
squares: ")
 vertMove(dir,dist)
 else :
 print("Invalid input, please try again")
 main()

main() # ener main loop

Complete hardware schematics

Complete Software listings

Relevant parts or component data sheets (do NOT include the data sheets for the microcontroller

or other huge files but give good links to where they may be found.)

